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Abstract The study of many biological systems requires the application of a com-
partmental analysis, together with the use of isotopic tracers, parameter identification
and methods to evaluate the mean parameters. For all this, the kinetic equations of the
compartmental system as a function of its parameters are needed. In this paper, we
present some considerations on the diagrams of connectivity of linear compartmen-
tal systems and obtain new properties from the matrix corresponding to the ordinary
first-order linear differential equation systems which describe their kinetic behaviour.
Using these properties, symbolic equations are obtained in a simplified form. These
equations provide the instantaneous amount of substance in any compartment of the
system when zero input is injected into one or more of the system compartments,
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solely as a function of those parameters of compartmental systems which really have
an influence on the sought expression. This is unlike what happens in the other sym-
bolic equations obtained in a previous contribution that included all the fractional
transfer coefficients involved in the compartmental system, regardless of whether or
not they had an influence on the instantaneous amount of substance.

Keywords Compartmental system · Linear · Open–closed · Kinectics ·
Symbolic equations

1 Introduction

A compartmental model originating from the pharmacokinetics field where a determin-
istic, hypothetical and simplified approximation allows the behaviour of drug concen-
trations in mathematical terms to be described [1,2]. From this classical perspective,
and for model construction purposes, all those structures that take a similar blood flow
or affinity by the tracer are considered a compartment; therefore, the drug concen-
tration is the same. Thus, the wide use of these dynamic models extends in parallel
with the increasing use of stable isotopes in human systems, together with simulation
technologies [3,4].

The majority of known drugs that act on the human organism present an absorp-
tion, distribution and elimination first-order linear kinetics, and its specific receipts
are joined reversiblely and are totally excreted„ therefore behaving like an open sys-
tem [5,6]. The study of the kinetics behaviour of drugs by means of compartmental
models leads, on the one hand, to the evaluation of those parameters related to the
absorption, distribution and elimination of drugs and their metabolites, whose mea-
sure cannot be taken directly and, on the other hand, to the prediction of behaviour
in non accessible places and its time course [7]. Interest in the use of compartment
models to define, identify and describe different very important systems in Biology,
Medicine, Physiology, Pharmacology, Nutrition, Toxicology, Biochemistry or Kinetic
Enzymes has grown in recent years [3,8–24]. Standard and very complete references
on compartmental modelling and analyses are those of [25–34]. The kinds of model
considered consist in a finite number of compartments related to the transfer rates that
control the reaction between them. A compartment may be actually physical or an
abstract representation of it [6,7,28,35,36].

The global study of compartmental systems involves the application of determi-
nants and matrix [25], the use of graphic methods [37,38], iterative methods [39] or
other methods which require the inversion of matrices. For this reason, systems with
a matrix that is not invertible generally have no solution [40,41].

Varon et al. [30] and Garcia-Meseguer et al. [10] developed a kinetic compartmental
system analysis of the model parameters (initial amount of substance in each com-
partment and the fractional transfer coefficients corresponding to the direct connection
between compartments).

Such analyses overcome many of the aforementioned difficulties through the intro-
duction of algorithms which facilitate the deduction of kinetic equations (30), while
the second analysis mentioned [10] represents a slight improvement over the first one
in that it uses symbolic coefficients which are always positive. In these contributions,
the symbolic expressions of the coefficients in the kinetic equations were obtained by
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procedures that do not require the expansion of determinants, operations with matrices
or graphic methods. In this way, explicit general equations describing the evolution of
any compartment of a linear system, either closed or open, were obtained. Moreover,
Garcia-Meseguer et al. [10] implemented a software, COEFICOM, developed in MS
Visual BASIC, that provides the expressions of these coefficients as a function of the
fractional transfer coefficients.

Nevertheless, the general symbolic equations provided by the above contributions
have the disadvantage of not being optimized; they all contain the fractional transfer
coefficients involved in the compartmental system’ diagram of connectivity, with-
out taking into account whether or not the coefficients influence any variation of the
amount of substance in a specific compartment. We believe this limitation is overcome
in the present contribution where the derived symbolic equations are given in the most
simplified possible form in which only those fractional transfer coefficients and zero
inputs with any influence on the instantaneous amount of the desired matter are fea-
tured. Thus, the kinetic equations obtained herein are very much improved, and we
will refer to them as optimized equations. “Appendix C” includes an example showing
the advantage of optimized equations compared with non optimized ones.

The compartmental system model under study in this paper consists of a linear
system, open or closed and with or without traps, where the amount of substance is
injected at t = 0 instantaneously (zero input or bolus) into one or more system com-
partments. In open systems, the substance is excreted from one or more compartment
to enter the environment. Firstly, we will look at closed systems and then, in the Results
and Discussion sections, we will show how open systems can be analyzed according
to the equations established for closed ones.

The results of this contribution (Paper I of this series) will be the starting point
to implement a software program (Paper II of this series) that will provide symbolic
equations for the linear compartmental systems.

2 Structure of the linear compartmental systems

Connection diagrams (connectivity diagrams and condensation diagrams) represent a
useful instrument for studying the structure of compartmental systems in depth.

2.1 Connectivity diagram

The structure of a compartmental system can be studied from its connectivity dia-
gram. With closed systems, the origin and destination of all the connections (arrows
that represent the direct flux of substance between the compartments) lie at one point
(identified as a compartment).

2.1.1 Notation and definitions

In each section, the standard definitions and nomenclature that are commonly
employed in the literature on closed compartmental systems have been used [8,10,11,
26,28,33,37,42] and will prove useful in the following analysis:
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n: Number of compartments in the system.
X1,X2,...,Xn: Each n compartment in the system.
�: Set of indices of all the inputs in the system: � = {X1, X2, . . . , Xn}.

The successor and precursor compartments of a given compartment. Let Xi

(i = 1, 2, . . . , n) be one system compartment. We state that compartment Xi is a
precursor of compartment X j ( j = 1, 2, . . . , n) if at least one path that connects com-
partment Xi with compartment X j exists. Xi , the precursor of X j , is denoted by
Xi ≺ X j and we state that X j is the successor of Xi. Evidently, a compartment is a
successor and a precursor of itself. By means of the notation Xi ⊀ X j , we indicate
that compartment Xi is not a precursor of compartment X j .

2.2 Condensation diagrams

The set of points of a connectivity diagram can be partitioned into several subsets,
which bring about a new diagram called a condensation diagram.

2.2.1 Notation and definitions

Class or strong component of a directed graph [11,26,28,35]: a set of system com-
partments; any compartment belonging to this set is both a successor and a precur-
sor of any other compartment belonging the same set. Every system compartment
belongs to one, and only one, class. Thus, a directed graph may consist of one or
more classes and, in turn, a class may contain one or more compartments. Therefore,
in a directed graph, we can distinguish several subgraphs, one for each class of the
system.

δ: Number of classes of the system
C1, C2, . . . , Cδ : Classes of the directed graph. In the directed graph, each class
will be represented by a circle, but we shall mention points of the condensation
diagram to refer to them as a whole.

i©: Class to which Xi belongs.

These definitions are illustrated by the example of Fig. 1 in which the overlapping
connectivity and condensation diagrams of a compartmental system are indicated.

Connection between classes
The scheme that results from representing a connectivity diagram (directed graph)

corresponding to a compartmental system, through their classes and the flow of the
substance between them (directed segments), is called a condensation diagram. By
way of example, Fig. 1 shows a condensation diagram for the classes corresponding
to the compartmental system.

The successor and precursor concepts, described above and referring to the connec-
tions between compartments, are also applicable to condensation diagrams by classes.
In the condensation diagram of Fig. 1, C1 ≺ C2 ≺ C3 and C1 ≺ C2 ≺ C4.
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Fig. 1 Connectivity and condensation diagrams corresponding to the same compartmental system where
the four classes have been labeled as gray circles. In this case δ = 4, �c = {C1, C2, C3, C4}, C1 =
{X1, X2}, C2 = {X3, X4}, C3 = {X7, X8, X9} and C4 = {X5, X6}

Types of classes

Initial class: That class which is only the successor of itself; that is, it does not
receive any flux of substance from any other class. In the condensation diagram of
Fig. 1, C1 is an initial class.
Final class: Defined as any class of the system that does not transfer substance to
any other class. In the condensation diagram of Fig. 1, C3 and C4 are final classes.
The final class concept coincides with the definition of simple trap [26,28]. When
the condensation diagram consists in only one class, this is considered a final class.
Transit Class: By exclusion, any class of the system that does not fulfil the condi-
tions defined for the rest of the classes types. In the condensation graph of Fig. 1,
C2 is a transit class.

3 Matrix of the system and some of its properties

The study of the matrix associated with linear compartmental systems is an indis-
pensable bridge between the structural and the kinetic studies of linear compartmental
systems [10,30,43].

3.1 Notation and definitions

Next, we revise the additional definitions and notations on compartmental systems
[10,11,30] needed to make progress in the paper. To support this task, we will use the
compartmental system shown in Fig. 2.

Ki,j (1, 2, . . . , n;i �= j): the fractional transfer coefficients corresponding to the
direct flux of substance from compartment Xi to compartment X j .

K: the matrix of the set of differential equations describing the kinetics of the closed
compartmental system under study, given by:
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Fig. 2 Directed graph regarding
a closed system consisting of
five compartments.
X1, X2,..., X5 denote the
compartments. Arrows indicate
the flux of substance among
them and K1,2, K2,1, . . . , K5,4
are the fractional transfer
coefficients relating to these
connections. C1 =
{X1, X2}, C2 = {X3} and C3 =
{X4, X5}. n1 = 2, c1 = 0, u1 =
2; n2 = 1, c2 = 1, u2 =
0; n3 = 2, c3 = 1, u3 = 1. C1 is
an initial class; C2 and C3 are
the final classes

K =

⎡
⎢⎢⎢⎢⎢⎢⎣

K1,1 K2,1 · · · Kn,1
K1,2 K2,2 · · · Kn,2

· · · · · ·
· · · · · ·
· · · · · ·

K1,n K2,n · · · Kn,n

⎤
⎥⎥⎥⎥⎥⎥⎦

(1)

where elements Ki, j (i = 1, 2, . . . , n; i �= j) are the fractional transfer coefficients.
The elements of the main diagonal Ki,i (i = 1, 2, . . . , n) are defined by the expression
below:

Ki,i = −
n∑

j=1
j �=i

Ki, j (i = 1, 2, . . . , n) (2)

A square matrix n × n in which it is verified that each element in the main diagonal
is, in absolute values, greater than or equal to the sum of all other elements of its own
column is denominated dominant diagonal matrix [44]; therefore, matrix K is a matrix
of this type. For the graph in Fig. 2 this matrix is:

K =

⎡
⎢⎢⎢⎢⎣

K1,1 K2,1 0 0 0
K1,2 K2,2 0 0 0

0 K2,3 K3,3 0 0
0 K2,4 0 K4,4 K5,4
0 0 0 K4,5 K5,5

⎤
⎥⎥⎥⎥⎦

(3)

where elements Ki,i (i = 1, 2, . . . , n) are:

K1,1 = −K1,2; K2,2 = −(K2,1 + K2,3 + K2,4); K3,3 = 0; K4,4 = −K4,5;
K5,5 = −K5,4
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D(λ): the characteristic polynomial of matrix K, i.e.:

D(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣

K1,1 − λ K2,1 · · · Kn,1
K1,2 K2,2 − λ · · · Kn,2
· · · · · ·
· · · · · ·
· · · · · ·
K1,n K2,n · · · Kn,n − λ

∣∣∣∣∣∣∣∣∣∣∣∣

(4)

D(0): D(λ) where we set λ = 0.
λh(h = 1, 2, . . . , n): the eigenvalues of matrix K.
u: the number of non null eigenvalues of matrix K.
λ1,λ1, . . .,λu: the non null roots of characteristic polynomial D(λ). In this contri-
bution, we assume that the algebraic multiplicity of each non zero eigenvalue of K
is one. Hearon [44] showed that the eigenvalues of a diagonally dominant matrix,
like matrix K, are negative real or complex with a negative real part and are, in no
case, purely imaginary.
c: the number of the null eigenvalues of matrix K, which coincides with the number
of the final classes of the compartmental system. As the system is closed, it follows
[8,11,28] that:

c ≥ 1 (5)

Given that the number of the eigenvalues of matrix K is n, it is obvious that:

n = u + c (6)

Dk,i(λ)(k, i = 1, 2, . . . , n): the determinant which results after removing the kth
row and the i th column from D(λ).

3.2 Some properties of D(λ)

The expansion of D(λ), given by Eq. (4), leads to [10,30]:

D(λ) = (−1)nλc
u∑

q=0

Fqλu−q (F0 = 1) (7)

D(λ) can also be expressed as a function of the roots of this polynomial as:

D(λ) = (−1)nλc
u∏

h=1

(λ − λh) (8)

By taking into account Eq. (7), the non null roots of D(λ) coincide with the roots of
the following polynomial:
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T (λ) =
u∑

q=0

Fqλu−q (9)

By comparing Eqs. (7) and (9), we obtain the following expression, which will prove
useful later:

D(λ) = (−1)nλcT (λ) (10)

3.3 Some properties of Dk,i (λ)(k, i = 1, 2, . . ., n)

The expansion of Dk,i (λ)(k, i = 1, 2, . . . , n) leads to [10,33]:

Dk,i (λ) = (−1)n+i+k−1λc−1

×
u∑

q=0

( fk,i )qλu−q [
( fk,i )0 = 0 if k �= i; ( fk,i )0 = 1 if k = i

]
(11)

where coefficients ( fk,i )q(k, i = 1, 2, . . . , n; q = 0, 1, 2, . . . , u), when they are not
1 or 0, consist of a sum of the terms involved in the corresponding coefficient Fq .

3.4 Some properties, associated with the structure of a compartmental system,
of coefficients ( fk,i )q

It is possible [45] to apply the following additional characteristics to coefficients
( fk,i )q(k, i = 1, 2, . . . , n; q = 0, 1, 2, . . . , u), deduced for coefficients (ak,i )q by
Galvez and Varon [11]:

If i© (i = 1, 2, . . . , n) is not a final class, then ( fk,i )u = 0 (12)

Xk(k = 1, 2, . . . , n) ⊀ Xi (i =1, 2, . . . , n) ⇔ ( fk,i )0 =( fk,i )1 = · · · = ( fk,i )u =0

(13)

Xk(k = 1, 2, . . . , n) ≺ Xi (i = 1, 2, . . . , n) ⇔ ( fk,i )u−1 �= 0 (14)

Xk(k = 1, 2, . . . , n) ≺ Xi (i = 1, 2, . . . , n) and i© is a final class ⇔ ( fk,i )u �= 0

(15)

3.5 Additional considerations on matrix K , D(λ) and its minors of n − 1 order

Matrix K, together with D(λ) and its minors Dk,i (λ), have been expressed by implic-
itly assuming that the differential kinetic equations for each compartment are written
in the same order as they are numbered. This way makes it easier to obtain the proper-
ties that have already been discussed, without generality loss, and they are all equally
valid, regardless of the order chosen for writing the differential equations. However,
the choice of another order to write the equations, for the same arbitrary numbering of
compartments as X1, X2,..., Xn , allows us to establish additional properties in relation
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to the different classes in the condensation diagram. The form that matrix K takes
depends on the order chosen for the compartments when writing their differential
kinetic equations. For a given numbering of the compartments, there will be n! possi-
ble K matrices. Obviously, the aspect of D(λ) depends on the order for writing matrix
K.

For a given arbitrary numbering of the system compartments, all the rows and col-
umns of any n! possible K matrices that we decide to write and their corresponding
D(λ) are associated with a system compartment. Evidently, the ordinal number of the
row associated with a compartment coincides with the ordinal number of the column
associated with the same compartment.

A row (or column) of matrix K can be identified by its order; i.e., 1st row, 4th
column, etc., or through the compartment associated with the row or the column;
for example, the row associated with the compartment X2, column associated with
compartment X1, etc.

Below we will use the following additional notations:

row(X j )( j = 1, 2, . . . , n): the row associated with compartment X j ( j =
1, 2, . . . , n) in matrix K and in the corresponding D(λ).
column(X j )( j = 1, 2, . . . , n): the column associated with compartment X j ( j =
1, 2, . . . , n) in matrix K and in the corresponding D(λ).
of (j): Ordinal number of row(X j ).
oc(j): Ordinal number of column(X j ).

Note that the eigenvalues of matrix K are independent of any of the n! possible
written forms.

The minor Dk,i (λ), that results removing row(Xk) and column(Xi ) from D(λ) is
given by:

Dk,i (λ) = (−1)n+oc(i)+of (k)−1λc−1

×
u∑

q=0

( fk,i )qλu−q [( fk,i )0 = 0, if k �= i; ( fk,i )0 = 1, if k = i] (16)

where coefficients ( fk,i )q(k, i = 1, 2, . . . , n; q = 0, 1, . . . , u) only depend on com-
partments Xk and Xi .

3.6 A suggested numbering of compartments and classes

The number of initial, transit and final classes in the condensation diagram is denoted,
respectively, by a, b and c and, obviously, by a +b + c = δ. For convenience, we will
take:

a + b = f (17)
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The n compartments in the directed graph are numbered arbitrarily and consecutively
from X1 to Xn , and the classes of the condensation diagram are numbered by the
following procedure: 1) First, the a initial classes from 1 to a, in any order. 2) The b
transit classes, from a + 1 to f so that if Cr ≺ Cv then r < v. 3) Then the c final
classes, from f + 1 to δ, in any order.

We will denote the number of compartments belonging to class Cr (r = 1, 2, . . . , δ)

by nr . Obviously:

δ∑
r=1

nr = n (18)

Let wr1, wr2 , . . . , wrn be the compartments that belong to class Cr (r = 1, 2, . . . , δ)

where: wr1 < wr2 < · · · < wrnr
.

cr: the parameter that indicates whether class Cr is a final one or not and which
takes the values:

cr =
⎧⎨
⎩

1 if Cr it is a final class

0 if Cr it is not a final class
(19)

This parameter coincides with the number of null eigenvalues of submatrix Mr,r ,
which is discussed below, and is associated with class Cr . Note that cr = 0 if r ≤ f,
and that cr = 1 if r > f .

ur: is defined as:

ur = nr − cr (20)

Therefore, this parameter coincides with the number of compartments in class Cr

if this is not a final, or with the number of compartments minus one if it is a final
one.

In the legend of Fig. 2, we have indicated the corresponding suggested numbering
of this subsection, as well as the values of nr , cr and ur .

3.7 The expression of matrix K in the submatrices

It is easy to show that, if the differential kinetic equations of the different sys-
tem compartments are written by beginning with the compartments of class C1,
and then with those corresponding to C2 and up to Cδ , and for a given class, and
by writing the equations in the same order in which the compartments are num-
bered in the class, matrix K will admit an expression in the submatrices as fol-
lows:
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K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1,1 0 · · · 0 0 0 · · · 0 0 0 · · · 0
0 M2,2 · · · 0 0 0 · · · 0 0 0 · · · 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 0 · · · Ma,a 0 0 · · · 0 0 0 · · · 0
M1,a+1 M2,a+1 · · · Ma,a+1 Ma+1,a+1 0 · · · 0 0 0 · · · 0
M1,a+2 M2,a+2 · · · Ma,a+2 Ma+1,a+2 Ma+2,a+2 · · · 0 0 0 · · · 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

M1, f M2, f · · · Ma, f Ma+1, f Ma+2, f · · · M f, f 0 0 · · · 0
M1, f +1 M2, f +1 · · · Ma, f +1 Ma+1, f +1 Ma+2, f +1 · · · M f, f +1 M f +1, f +1 0 · · · 0
M1, f +2 M2, f +2 · · · Ma, f +2 Ma+1, f +2 Ma+2, f +2 · · · M f, f +2 0 M f +2, f +2 · · · 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

M1,δ M2,δ · · · Ma,δ Ma+1,δ Ma+2,δ · · · M f,δ 0 0 · · · Mδ,δ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21)

where the submatrices indicated as Mr,v(r, v = 1, 2, . . . , δ; r ≤ v) are given by:

Mr,v =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Kwr1
,wv1

Kwr2
,wv1

. . . Kwrnr ,wv1

Kwr1
,wv2

Kwr2
,wv2

. . . Kwrnr ,wv2

. . . . . .

. . . . . .

. . . . . .

Kwr1
,wvnv

Kwr2
,wvnv

. . . Kwrnr ,wvnv

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(r, v = 1, 2, . . . , δ; r ≤ v) (22)

and each submatrix indicated as 0 in Expression (21), which is located in the r th
row and vth column of matrix K , has nv rows and nr columns, while all its ele-
ments are zeros. It may also possible that one or more of the submatrices denoted as
Mr,v(r > v if r ≤ f ) may be a matrix r × v, whose elements are all zeros.

Below, matrix K in the submatrices will be denoted by K•. Matrix K• is a square
δ× δ and a lower triangular. Each submatrix Mr,r (r = 1, 2, . . . , δ) may be considered
the associated matrix with class Cr .

3.7.1 Additional notations and definitions

We shall define a number of sets and matrices that will prove useful later:

�: a set of the compartments of the compartmental system; that is, a non empty
subset of set �.
ω: a set whose elements are the subindices used in the notation of the compartments
of set �.
�(i): a set consisting in those compartments of set � which are precursors of
compartment Xi .
ω(i): a set whose elements are the subindices used in the notation of the compart-
ments of set �(i).
E(�, Xi): a set of the classes that are, simultaneously, successors of the classes to
which the compartments of set � and the precursors of class i©. For convenience,
in some equations, E(�, Xi ) is written as the abbreviated form of Ei .
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α: the number of classes belonging to set E(�, Xi ), thus:

E(�, Xi ) = {Cr1, Cr2 , . . . , Crα } (23)

Obviously in some cases, the set E(�, Xi ) may have no elements; i.e. it may be
the empty set, thus α = 0.
e(i): a set whose elements are the subindices used to denote the classes belonging
to E(�, Xi ), i.e.:

e(i) = {r1, r2, . . . , rα} (24)

S(�, Xi): a set of compartments belonging to the set of classes E(�, Xi ), i.e., the
set of the compartments that are simultaneously the successor compartments of set
� and the precursors of compartment Xi .
n(i): the number of compartments belonging to set S(�, Xi ).
s(i): a set whose elements are the subindices used to denote the compartments
belonging to set S(�, Xi ).
c(i): a number equal to 1 if i© is a final class, or equal to 0 if i© is not a final class.
u(i): a number equal to n(i) if i© is not final, and equal to n(i) − 1 if i© is final,
i.e.:

u(i) = n(i) − c(i) (25)

3.7.2 Eigenvalues and the characteristic polynomial of matrix K from matrix K•

In matrix K•, the submatrices Mr,r (r = 1, 2, . . . , δ) of the main diagonal are irreduc-
ible; i.e., they cannot be expressed in the following form:

Mr,r =
[

M ′
r,r 0

M ′′
r,r M ′′′

r,r

]
(26)

where M′
r,r and M′′′

r,r are square submatrices. This means that it would be another class
within class Cr that is associated with Mr,r , which is not possible since we know that
all the classes are disjoints.

In addition, if r ≤ f , in the column of matrix K• to which Mr,r belongs, there will
be at least one other non null submatrix. At these conditions Mr,r is a matrix in which
at least one of the elements on its main diagonal is, in absolute values, greater than
the sum of all the other elements in the same column; i.e., is a diagonally dominant
matrix. In this case, if the matrix is also irreducible, then it is non singular [46]; i.e.,
it has no null-eigenvalue. On the other hand, if r > f , the sum of the elements of all
the columns is zero and Mr,r has one, and only one, null eigenvalue [44]. Therefore,
the number of the null eigenvalues of matrix K• coincides with the number of final
classes of the corresponding compartmental system.

We will denote the characteristic polynomial associated with submatrix Mr,r(r =
1, 2, . . . , δ) as �r (λ) (r = 1, 2, . . . , δ) or, with its equivalent, class Cr (r = 1, 2, . . . ,

δ). The expansion of �r (λ) (r = 1, 2, . . . , δ) gives:
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�r (λ)= (−1)nr λcr
{
λur + F1(r)λur −1 + F2(r)λur −2 + · · · + Fur −1(r)λ + Fur (r)

}

[F0(r) = 1] (27)

If class Cr is final (r > f ), then polynomial �r (λ) has one, and only one, null root.
For further arguments, it is convenient to define polynomial Tr (λ) (r =1, 2, . . . , δ)

as:

Tr (λ) =
ur∑

q=0

Fq(r)λur −q (28)

Now polynomial �r (λ) in Eq. (27) can be written as:

�r (λ) = (−1)nr λcr Tr (λ) (29)

and, therefore, the non null roots of �r (λ) are the roots of Tr (λ). In those cases
where ur = 0, which happens when class Cr is final and has only one compartment,
nr = cr = 1, Eqs. (28) and (29) are reduced to:

Tr (λ) = 1 (nr = cr = 1) (30)

�r (λ) = −λ (nr = cr = 1) (31)

By now applying the Laplace rule for the development of a determinant by the com-
plementary minors, we obtain:

D(λ) =
δ∏

r=1

�r (λ) (32)

The eigenvalues of matrix K• are the set of eigenvalues of all the submatrices Mr,r

(r = 1, 2, . . . , δ); i.e., the roots of polynomials �r (λ)(r = 1, 2, . . . , δ). As follows,
we will number the n eigenvalues of matrix K• in a such way that they are the eigen-
values of submatrix Mr,r , and if Cr is a final class (r > f ), we will assign the same
subindex to the corresponding null root as that corresponding to the compartment
denoted with the higher subindex in the class; i.e., if Cr = {Xwr1

, Xwr2
, . . . , Xwrnr

}
is a final class, then the null root is denoted by λwrnr

.

3.7.3 Expressions of D(λ), Dk,i (λ) and T (λ) corresponding to set E(�, Xi )

We will denote the matrix obtained from matrix K• by K •
Ei

by eliminating the sub-
matrices in the rows and columns whose number of order does not belong to set e(i).
We will denote the corresponding matrix by KEi whose elements are the fractional
transfer coefficients.

By taking into account the form of matrix K• and by applying the Laplace rule
again for the expansion of a determinant by the complementary minors, polynomial
D(λ) can also be written as:
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D(λ) =

⎡
⎢⎢⎣

δ∏
r=1

r /∈e(i)

�(λ)

⎤
⎥⎥⎦ DEi (λ) (33)

where DEi (λ) is the characteristic polynomial corresponding to matrix K •
Ei

; i.e.:

DEi (λ) = (−1)n(i)λc(i)TEi (λ) (34)

in which:

TEi (λ) =
u(i)∑
q=0

Fq(Ei )λ
u(i)−q [F0(Ei ) = 1] (35)

We will name the set of the subindices corresponding to the non null roots of the
characteristic polynomial DEi (λ) z(i). These non null roots coincide with the roots of
the corresponding polynomials TEi (λ).

If in DEi (λ), row(Xk) (k ∈ ω) and column(Xi ) (the subindex of Xi involved in
E(�, Xi )) are removed, then:

Dk,i (λ) = 0 if Xk⊀Xi (36)

Dk,i (λ) =

⎡
⎢⎢⎣

δ∏
r=1

r /∈e(i)

�r (λ)

⎤
⎥⎥⎦ DEi ;k,i (λ) if Xk ≺ Xi (37)

where DEi ;k,i (λ) [k, i = 1, 2, . . . , n(i)] can be expressed in a polynomial form as:

DEi ;k,i (λ) = (−1)n(i)+oc(i)+of (k)−1λc(i)−1

×
u(i)∑
q=0

( fk,i )q(Ei )λ
u(i)−q [k, i = 1, 2, . . . , n(i)] (38)

3.7.4 The relation among T (λ), Tr (λ)(r = 1, 2, . . ., δ) and TEi (λ)

If Eqs. (29) and (34) are replaced in Eq. (33), then:

D(λ) =

⎡
⎢⎢⎣

δ∏
r=1

r /∈e(i)

(−1)nr λcr Tr (λ)

⎤
⎥⎥⎦ (−1)n(i)λc(i)TEi (λ) (39)

By bearing in mind Eq. (21) and c, the number of total null roots can be written as
so:
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D(λ) = (−1)nλc

⎡
⎢⎢⎣

δ∏
r=1

r /∈e(i)

Tr (λ)

⎤
⎥⎥⎦ TEi (λ) (40)

On the other hand, if in Eq. (32) we replace the expression of �r (λ) with that given
in Eq. (29), we find that:

D(λ) = (−1)nλc
δ∏

r=1

Tr (λ) (41)

Once again, if we consider Eq. (21) and the total number of null roots c by comparing
Eq. (40) with Eq. (41), we obtain:

δ∏
r=1

Tr (λ) =

⎡
⎢⎢⎣

δ∏
r=1

r /∈e(i)

Tr (λ)

⎤
⎥⎥⎦ TEi (λ) (42)

Then from both members of equality, we will finally obtain:

TEi (λ) =
δ∏

r=1
r∈e(i)

Tr (λ) (43)

4 Kinetic analysis

The kinetic behaviour of the linear compartmental system with a zero input is described
by a homogeneous system of first-order ordinary differential equations with constant
coefficients. We will assume that the eigenvalues of matrix K of the differential equa-
tions system are simple (i.e., they are not repeated) which, in practice, is the most
likely situation.

4.1 Notation and additional definitions

In this section, the standard definitions and the nomenclature which usually appears
in the literature on compartmental systems will be used, along with some notations
and additional definitions which, together with the previous ones, will be required
to obtain the corresponding symbolic equations. To help, the closed compartmental
system of Fig. 3 will be used.

xi (i = 1, 2, . . . , n) : Instantaneous amount of substance in compartment Xi .
x0

i (i=1, 2, . . . , n) : Instantaneous amount of substance in compartment Xi at t=0.
G(�, Xi ): A brief form of designating the compartmental system of Graph G for
which the instantaneous amount of substance in compartment Xi is required to be
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Fig. 3 Example of a
compartmental system:
a Directed graph with the
numbering (arbitrary but
correlative) of compartments.
b Circles of discontinuous lines
corresponding to different
classes which involve the
compartments belonging to
them. c Condensation diagram
that shows the eight classes of
the system. Classes C1, C2 and
C3 are the initial ones; classes
C4 and C5 are transit classes;
C6, C7 and C8 are the final
classes
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known when the substance is initially injected into the compartments of set �. For
example, if in the compartmental system of Fig. 3 X17 is chosen as compartment
Xi and the set {X3, X6, X13} as �, then G(�, Xi ) could be briefly denoted by
G({X3, X6, X13}, X17), where G is the directed graph of Fig. 3a.
I ndex ∈ set : The index which takes each and every one of the values that indicate
the elements of the set, and which is always a set of numbers. For example, if k ∈ ω

is written, where ω is the set {3, 6, 13}, this indicates that k takes, in any order and
successively, the values of 3, 6 and 13.∑

h∈z(i) expression that depends on h: a sum extended to all the elements of set
z(i); i.e., h takes each and every one of the values of the elements of set z(i).∑

k∈ω expression that depends on k: a sum extended to all the elements of set
ω; i.e., k takes each and every one of the values of the elements of set ω.∑

k∈ω(i) expression that depends on k: a sum extended to all the elements of set
ω(i); i.e., k takes each and every one of the values of the elements of set ω(i).∏

p∈z(i)
p �=h

(λp − λh): the product of the u(i) − 1 factors as indicated so that index p

takes each and every one of the values of the elements of set z(i), except value h.

4.2 Optimized general kinetic equations

In “Appendix A”, the following expression is obtained for the variation of substance
with time in a compartment Xi (i = 1, 2, . . . , n) when the substance is injected, at
t = 0, into one or more of the system compartments (set � as defined above):

xi = Ai,0 +
∑

h∈z(i)

Ai,heλh t (i = 1, 2, . . . , n) (44)

where the expressions of coefficients Ai,0 and Ai,h are:

Ai,0 =
∑

k∈ω(i) ( fk,i )u(i)(Ei )x0
k

Fu(i)(Ei )
(i = 1, 2, . . . , n) (45)

Ai,h =
(−1)u(i)−1 ∑

k∈ω(i) x0
k

{∑u(i)
q=0 ( fk,i )q(Ei )λ

u(i)−q
h

}

λh
∏

p∈z(i)
p �=h

(λp − λh)

[i = 1, 2, . . . , n; h ∈ z(i)] (46)

If only there is one non null root, i.e. u(i) = 1, then the denominator of the previous
equation is equal to λ1 and, in this case, its value is −F1(Ei ).

We will design Eqs. (44)–(46) as “optimized general kinetic equations” for
G(�, Xi ). “Appendix C” includes an example of these optimized general kinetic equa-
tions applied to compartmental system G({X2, X5}, X3), where G is the connectivity
diagram indicated in Fig. 2. Even in this non complex system, the Expressions (C.26),
(C.36)–(C.39) obtained using the non optimized equations are much more complex
than those obtained from the optimized kinetic equations (C.9), (C.19)–(C.21).
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5 Results

When obtaining the general symbolic kinetic equations for linear compartmental sys-
tems, like those analyzed herein, and as described in previous contributions [10,30],
neither the properties of matrix K nor its characteristic polynomial D(λ) relating to
the distribution of system compartments into classes, as described in this paper, have
been considered. These equations involve all the initial amounts of substance and
all the fractional transfer coefficients in the compartmental system, regardless of the
compartment for which we need to know the temporal evolution of the amount of
substance and the compartments where the material is injected at t = 0. In most cases
however, there are zero inputs and fractional transfer coefficients which have no effect
on the desired kinetic behavior. When this occurs, much additional work is necessary
to apply the equations to a specific case of compartmental systems to obtain both the
equations and the subsequent simplification. Indeed, these general equations are not
optimized. Below in Sect. 6.3, we emphasize the point of view from the equations
presented herein being optimized and we illustrate it with an example.

In the analysis of any linear compartmental system, involving compartments X1,

X2, . . . , Xn , there are two problems to be solved: 1) the direct problem; i.e., deter-
mining the system’s kinetic behavior for certain entries by assuming both the con-
nectivity diagram and the values of the fractional non null transfer coefficients
Ki, j (i, j = 1, 2, . . . , n; i �= j) between compartments Xi and X j . 2) The inverse
problem; i.e. determining the structure of the system’s connectivity diagram and esti-
mating the values of the fractional transfer coefficients [26,35,47]. Some contributions
illustrate the direct problem described in the references [6,10,25,26,30,31,38,39,44].
A recent contribution to the inverse problem was by Juillet et al. [48]. Therefore,
applications of compartmental models are very extensive and can be descriptive or
predictive, but they may also be theoretical or applied.

The structure of a compartmental system can be approached from two different and
complementary points of view: the connection diagrams and the system matrix. In this
contribution, we have provided a thorough review of all the compartmental systems
which fit the model proposed from both perspectives, and we also provide concepts,
definitions and additional properties which, together with those already presented in
the literature, have formed the basis for obtaining the expressions that describe the
overall kinetic behavior of any compartmental system that fits our model (see “Appen-
dix A”).

The importance of these kinetic equations is more readily understood if we take into
account that it is necessary to include analytical kinetic equations in the inverse prob-
lem of compartmental systems that contain the parameters of the model as variables
so that an experimental design can be proposed and an analysis of the experimental
data can evaluate these parameters.

6 Discussion

The literature includes contributions covering the derivation of this kind of equations.
Nonetheless, in our opinion, they present one or more of the following limitations:
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1. They refer to specific compartmental systems in that they consist of a fixed number
of compartments and connections [49–51].

2. They deal with only specific compartmental systems such as catenary [52] and
mammillary systems [53].

3. They include only those systems where input is performed in only one compart-
ment [25].

4. In those cases in which the expressions are applicable to any compartment model,
these are given in a very generic and slightly elaborated form so that implementa-
tion requires the manipulation of matrices and symbolic determinants [8,11,26,
28], which differ from one particular case to another. As it is known, this task
is laborious, tedious and, therefore, prone to human errors. This problem cannot
be avoided in systems with a few compartments, and not even when computer
resolution packages are being used.

5. Even in the general kinetic equations, in which the development of determinants
is facilitated through the systematic use of certain algorithms, Eqs. (44)–(46) are
not provided in an optimized form because they involve all the kinetic parameters
of the system, regardless of whether or not they have any influence on the instant
amount of substance being sought [8,11,30,33].

6.1 Open systems

Open systems involve the release of a substance from one or more of the system com-
partments (even all of them) to the environment. To determine the kinetic expressions
of a linear open system of N compartments with or without traps, it is sufficient to
obtain the kinetic equations of the closed system. These equations are obtained by
adding to the studied open one, of a single hypothetical compartment, Xn , so that n,
equal to N +1, is now the number of compartments of the closed system obtained from
the open system studied. The additional compartment, Xn , behaves as a collector of
all the substance excreted to the environment from any compartment of the real initial
open system [28,35]. In order to also determine the kinetics of the elimination of sub-
stance from the open system to the environment, it is necessary to simply determine
the instant accumulation of substance in compartment Xn .

The open linear compartmental systems with a zero input can be formally treated
as a hypothetical closed compartmental system from the kinetics point of view, where
the environment is replaced with a single compartment that receives all the excre-
tions. Therefore, all the results obtained in this work for closed systems are applicable
to open systems after making the slight changes required by the formal addition of
the aforementioned compartment; for example, the fractional excretion coefficients,
non zero, Ki,o (i = 1, 2, . . . , N ) corresponding to the excretion of substance from
compartment Xi (i = 1, 2, . . . , N ) to the environment are replaced with the corre-
sponding fractional transfer coefficient Ki,n(i = 1, 2, . . . , N ; n = N + 1). Once the
kinetic equations of the closed system have been obtained, the fractional transfer coef-
ficients Ki,n(i = 1, 2, . . . , N ; n = N +1) involved in them must be replaced with the
corresponding fractional excretion coefficients Ki,o(i = 1, 2, . . . , N ). An entire and
systematic analysis that treats these open systems through the corresponding kineti-
cally equivalent closed system was carried out by Garcia-Meseguer et al. [10,33].
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6.2 Applicability of the equations

The optimized general kinetic equations obtained in this work, Eqs. (44)–(46), can be
applied to any linear compartmental system; i.e., open or closed, with one or more
zero inputs, with or without traps.

These equations are very elaborate and, at the same time, provide the greatest pos-
sible degree of simplification because they provide the instant amount of substance in
any system compartment explicitly in terms of only those fractional transfer coeffi-
cients and zero inputs that have any influence on the instantaneous amount of substance
desired.

The optimized kinetic equations (44)–(46) are valid for the distribution process of
substance between system compartments in both the transition phase and the steady
state. In the latter, in the steady state (t → ∞), the general expression, this being Eq.
(44), it is simplified to:

xi = Ai,0 (i = 1, 2, . . . , n) (47)

and, in some cases, to Ai,0 = 0.
The analysis used here for those compartmental linear systems with a zero input

is also applicable to the solution of systems with inputs other than zero because this
analysis firstly requires the solution by assuming a zero input [26,28,35].

6.3 Non optimized kinetic equations

There are other contributions [10,30] that also cover kinetic equations, but these equa-
tions have an important limitation which have been circumvented in this work. One
of these limitations is that the symbolic equations include all the fractional transfer
or excretion coefficients and zero inputs involved in the compartmental system under
study, independently of whether these coefficients and inputs have or not any influence
on the desired results; i.e. there are superfluous quantities involved in the symbolic
equations which, therefore, will require ulterior simplification, which is generally dif-
ficult. “Appendix B” shows the non optimized equations [Eqs. (B.1)–(B.3)] together
with the optimized ones [Eqs. (44)–(46)] so they can be compared.

To emphasize the advantages of the optimized equations obtained herein over the
non optimized ones, the advanced but not the optimized Eqs. (B.1)–(B.3) in “Appendix
B”, we have obtained the results of applying them to the same example, which are
presented in “Appendix C”.

7 Conclusion

In this work we have obtained, for the first time, the kinetic equations corresponding to
the linear system of n compartments in their optimized general form; Eqs. (44)–(46).
To do this, we have used the structure of these systems, their connectivity and conden-
sation diagrams, as well as the properties of matrix K, its characteristic polynomial
and minors of order n − 1.
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Appendix A

Derivation of the general optimized Eqs. (44)–(46)

In closed linear compartmental systems with a zero input, the differential equations
system that describes the progress of substance in each system compartment is given
by the following expression:

dxi

dt
= K1,i x1 + K2,i x2 + · · · + Kn,i xn (i = 1, 2, . . . , n) (A.1)

The set of Eq. (A.1) corresponds to a homogeneous linear system of ordinary dif-
ferential equations with constant coefficients.

The Laplace transform, L{xi } (i = 1, 2 . . . , n), of any of the equations included in
Eq. (A.1) is:

L{xi } = (−1)oc(i)+1∑
k∈ω(−1)of (k) Dk,i (λ)x0

k

D(λ)
(A.2)

where the meanings of oc(i), of(k), D(λ), Dk,i (λ) and k ∈ ω have been given in
Sects. 3.2 and 3.3.

If Eqs. (7) and (11) are applied to Eq. (9), for D(λ) and Dk,i (λ), then:

L{xi } = (−1)oc(i)+1 ∑
k∈w (−1)of (k) DEi ,k,i (λ)x0

k

DEi (λ)
(A.3)

If Eq. (37) is now introduced into Eq. (A.3) and the polynomial expression given
by Eq. (38) is taken into account, then:

L{xi } =
∑

k∈ω xo
k

∑u(i)
q=0

(
fk,i

)
q (Ei )λ

u(i)−q

λ
∏

h∈z(i) (λ − λh)
(i = 1, 2, . . . , n) (A.4)

By considering that we have assumed that the u(i) non null roots of DEi (λ) are simple,
the second member of Eq. (A.4) may be decomposed into the following sum of simple
fractions:

L{xi } = Ai,0

λ
+

∑
h∈z(i)

Ai,h

λ − λh
(i = 1, 2, . . . , n) (A.5)
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By taking the inverse Laplace transform in Eq. (A.5), Eq. (44) from the main text is
obtained, where the expressions of coefficients Ai.0 and Ai,h are easily obtained from
Eqs. (A.4) and (A.5):

Ai,0 =
∑

k∈ω ( fk,i )u(Ei )x0
k

Fu(i)(Ei )
(i = 1, 2, . . . , n) (A.6)

Ai,h =
(−1)u(i)−1 ∑

k∈ω xo
k

(∑u(i)
q=0 ( fk,i )q(Ei )λ

u(i)−q
)

λh
∏

p∈z(i)
p �=h

(λp − λh)
[i = 1,2, . . . , n; h ∈ z(i)]

(A.7)

If set z(i) consists of only one element or, in other words, if u(i) = 1 (i.e., the
polynomial has only one non null root), then the denominator of the previous equation
is equal to λ1 which, in this case, coincides with −F1(Ei ).

Index k, which does not belong to set ω(i) will provide the null coefficients values
( fk,i )q . Therefore, the above Eqs. (A.6) and (A.7) can be simplified even more to
obtain Eqs. (45) and (46) of the main text, where set ω has been replaced with set
ω(i). Obviously, these two sets could coincide.

If there is only one non null root, i.e., u(i) = 1, then the denominator of the
previous equation is equal to λ1 which, in this case, would coincide with −F1(Ei ).

Appendix B

Comparison of the symbolic expressions for the optimized and non optimized
equations

The meanings of the different magnitudes contained in them are defined in the main
text. The numbers of the optimized equations coincide with the equations in the main
text.

Optimized equations Non optimized equations

xi =Ai,0+∑
h∈z(i) Ai,heλh t (i=1, 2, . . . , n) (44) xi =Ai,0+∑u

h=1 Ai,heλh t (i=1, 2, . . . , n) (B.1)

Ai,0=
∑

k∈ω(i) ( fk,i )u(i)(Ei )x0
k

Fu(i)(Ei )
(i=1, 2, . . . , n) (45) Ai,0=

∑
k∈ω ( fk,i )u x0

k
Fu

(i=1, 2, . . . , n) (B.2)

Ai,h= (−1)u(i)−1 ∑
k∈ω(i) xo

k

(∑u(i)
q=0 ( fk,i )q (Ei )λ

u(i)−q
)

λh
∏

p∈z(i)

p �=h

(λp−λh )
Ai,h= (−1)u−1 ∑

k∈ω xo
k

(∑u
q=0 ( fk,i )qλu−q

)

λh
∏u

p=1

p �=h

(λp−λh )

[i=1, 2, . . . , n; h ∈ z(i)] (46) (i=1, 2, . . . , n; h=1, 2, . . . , u) (B.3)

Note: If there is only one non null root, i.e. u(i) = 1 (in the optimized equations), or u = 1 (in the non
optimized ones), then the denominators of Eqs. (46) and (B.3) are equal to λ1 which, in this case, coincide
with −F1(Ei ) in the optimized equations and with −F1 in the non optimized equations.
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Appendix C

Example 1: Applying the optimized general kinetic equations

In this section, and by way of example, the optimized general kinetic equations
G(�, Xi ) (44)–(46), will be applied to compartmental system G({X2, X5}, X3) where
G is the connectivity diagram indicated in Fig. 2 and C1 = {X1, X2}, C2 = {X3},
C3 = {X4, X5}, where C1 is an initial class, and C2 and C3 are final classes. In this
case:

� = {X2, X5} (C.1)

Xi ≡ X3 (C.2)

This election leads to the following results:

E3(�, X3) = {C1, C2} (C.3)

ω(3) = {2} (C.4)

z(3) = {1, 2} (C.5)

n(3) = 3 (C.6)

u(3) = 2 (C.7)

The application of Eq. (44) to this case gives:

x3 = A3,0 +
∑

h∈z(3)

A3,heλh t (C.8)

or, in its expanded form:

x3 = A3,0 + A3,1eλ1t + A3,2eλ2t (C.9)

where, according to Eqs. (45) and (46), and by taking into account values (C.1)–(C.7),
we obtain:

A3,0 = ( f2,3)2(E3)x0
2

F2(E3)
(C.10)

A3,h = −
x0

2

(∑2
q=0 ( f2,3)q(E3)λ

2−q
h

)

λh
∏

p∈z(3)
p �=h

(λp − λh)
(h = 1, 2) (C.11)

The roots λ1 and λ2 involved in Eqs. (C.9) and (C.11) are the roots of polynomial
T1(λ):

T1(λ) = λ2 + F1(1)λ + F2(1) (C.12)
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where:

F1(1) = K1,2 + K2,1 + K2,3 + K2,4 (C.13)

F2(1) = K1,2 K2,3 + K1,2 K2,4 (C.14)

On the other hand, coefficients F2(E3) and ( f2,3)q(E3)(q = 0, 1, 2), determined
as explained in the main text, are:

F2(E3) = K1,2(K2,3 + K2,4) (C.15)

( f2,3)0(E3) = 0 (C.16)

( f2,3)1(E3) = K2,3 (C.17)

( f2,3)2(E3) = K1,2 K2,3 (C.18)

Finally, if in Eqs. (C.10) and (C.11) we substitute Expressions (C.15)–(C.18), then:

A3,0 = K2,3

K2,3 + K2,4
x0

2 (C.19)

A3,1 = − K2,3λ1 + K1,2 K2,3

λ1(λ2 − λ1)
x0

2 (C.20)

A3,2 = − K2,3λ2 + K1,2 K2,3

λ2(λ1 − λ2)
x0

2 (C.21)

Example 2: Applying the non optimized equations

In order to compare the expressions obtained from both equations sets, here we
will apply the non optimized Eqs. (B.1)–(B.3) to the same compartmental system
G({X2, X5}, X3) used before in Example 1.

In this case:

ω = {2, 5} (C.22)

n = 5 (C.23)

u = 3 (C.24)

The application of Eq. (B.1) to this case gives:

x3 = A3,0 +
3∑

h=1

A3,heλh t (C.25)

or, in its expanded form:

x3 = A3,0 + A3,1eλ1t + A3,2eλ2t + A3,3eλ3t (C.26)
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where, according to Eqs. (B.2) and (B.3), and by taking into account values (C.22)–
(C.24), we obtain:

A3,0 = ( f2,3)3x0
2 + ( f5,3)3x0

5

F3
(C.27)

A3,h =
x0

2

(∑3
q=0 ( f2,3)qλ

3−q
h

)
+ x0

5

(∑3
q=0 ( f5,3)qλ

3−q
h

)

λh
∏3

p=1
p �=h

(λp − λh)
(h = 1, 2, 3)

(C.28)

The roots λ1, λ2 and λ3 involved in Eqs. (C.26) and (C.28) are the roots of polynomial
T (λ):

T (λ) = λ3 + F1λ
2 + F2λ + F3 (C.29)

where:

F1 = K1,2 + K2,1 + K2,3 + K2,4 + K4,5 + K5,4 (C.30)

F2 = K1,2(K2,3 + K2,4 + K4,5 + K5,4) + (K2,1 + K2,3 + K2,4)(K4,5 + K5,4)

(C.31)

F3 = K1,2(K2,3 + K2,4)(K4,5 + K5,4) (C.32)

On the other hand, the non zero coefficients ( f2,3)q and ( f5,3)q(q = 0, 1, 2, 3) are:

( f2,3)1 = K2,3 (C.33)

( f2,3)2 = K2,3(K1,2 + K4,5 + K5,4) (C.34)

( f2,3)3 = K1,2 K2,3(K4,5 + K5,4) (C.35)

Finally, if in Eqs. (C.27) and (C.28) we substitute the Expressions (C.32)–(C.35),
by taking into account the zero-value coefficients ( fk,i )q , then:

A3,0 = K2,3

K2,3 + K2,4
x0

2 (C.36)

A3,1 = K2,3λ
2
1 + K2,3(K1,2 + K4,5 + K5,4)λ1 + K1,2 K2,3(K4,5 + K5,4)

λ1(λ2 − λ1)(λ3 − λ1)
x0

2

(C.37)

A3,2 = K2,3λ
2
2 + K2,3(K1,2 + K4,5 + K5,4)λ2 + K1,2 K2,3(K4,5 + K5,4)

λ2(λ1 − λ2)(λ3 − λ2)
x0

2

(C.38)

A3,3 = K2,3λ
2
3 + K2,3(K1,2 + K4,5 + K5,4)λ3 + K1,2 K2,3(K4,5 + K5,4)

λ3(λ1 − λ3)(λ2 − λ3)
x0

2

(C.39)
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